If it's not what You are looking for type in the equation solver your own equation and let us solve it.
150t-16.1t^2+50=0
a = -16.1; b = 150; c = +50;
Δ = b2-4ac
Δ = 1502-4·(-16.1)·50
Δ = 25720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25720}=\sqrt{4*6430}=\sqrt{4}*\sqrt{6430}=2\sqrt{6430}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-2\sqrt{6430}}{2*-16.1}=\frac{-150-2\sqrt{6430}}{-32.2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+2\sqrt{6430}}{2*-16.1}=\frac{-150+2\sqrt{6430}}{-32.2} $
| 1/21-7/3x+6=1/7x=14 | | 19=-2y | | 2(n+1/3)=3/2.n+1+1/2-1/3 | | 7=12-12q+3q^2 | | (y-3)(y+2)=-2y | | 5(20x+75)=1,375 | | √x^2-36=64 | | 10x-14=10x-20+6 | | (x^2-36)^0.5=64 | | 17(250)+22x=5,363 | | (x+6)^2=2x+11 | | -3w(w-7)=5w+3 | | X/10-4/10=3/5-(x/15-5/15) | | 16c+3/5=12c-57/5 | | 10r-10r=6 | | 3y+4y-3+3y+4y-3=148 | | -7x^2-54x+81=0 | | 2a^2−9a−5=0 | | 7(x+3)=5(x-3 | | a(5a-7)=6 | | 5(2+4x)=50 | | 6(4+5x)=24 | | 6(4+x)=84 | | 6m^2=3m+9 | | 11x+16+7x+2=180 | | 7(7+2x)=49 | | -18=11x-17 | | 4z+2+5z+3+4z+2+5z+3=100 | | x+140+x+54=180 | | 2(7x+1)=44 | | 3(2+5x)=51 | | -7x(x+3)=-2(x+3)-5x |